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ABSTRACT 

Potential applications of airborne LiDAR for disaster monitoring include flood prediction and 
assessment, monitoring of the growth of volcanoes and assistance in the prediction of eruption, 
assessment of crustal elevation changes due to earthquakes, and monitoring of structural damage 
after earthquakes.  Change detection in buildings is an important task in the context of disaster 
monitoring, especially after earthquakes. The paper will describe the capability of airborne LiDAR 
for rapid change detection in elevations, and methods of assessment of damage in made-made 
structures. The approach is to combine change detection techniques such as image differencing, 
principal components analysis (PCA), minimum noise fraction (MNF) and post-classification 
comparison based on support vector machines (SVM), each of which will perform differently, based 
on simple majority vote. In order to detect and evaluate changes in buildings, LiDAR-derived 
DEMsfrom two epochs were used, showing changes in urban buildings due to construction and 
demolition. To meet the objectives, the detected changes were compared against reference data 
that was generated manually. The comparison is based on three criteria: overall accuracy; 
commission and omission errors; and completeness and correctness.The results showed that the 
average detection accuracies were: 84.7%, 88.3%, 90.2% and 91.6% for post-classification, image 
differencing, PCA and MNF respectively. On the other hand, the commission and omission errors, 
and completeness and the correctness of the results improved when the techniques were 
combined,compared to the best single change detection method. The proposed combination of 
techniques gives a high accuracy of 97.2% for detection of changes in buildings, which 
demonstrates the capabilities of LiDAR data to detect changes, thus providing a valuable tool for 
efficient disaster monitoring and effective management and conservation.  
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1 INTRODUCTION AND RELATED WORKS 

An up-to-date building database is a crucial requirement for reliable disaster damage 
assessment. Change detection employing LiDAR(Light Detection and Ranging)data is a useful tool 
for damage detection, particularly for collapsed multi-floored buildings (Tuong et al., 2004). 
LiDARsare active acquisition systems equipped with a laser scanner, a Global Positioning System 
(GPS) receiver and an Inertial Navigation System (INS).  They emit infrared laser pulses at high 
frequency and record the time of flightof the return pulses.By combining the LiDAR distance with 
GPS and INS data the X, Y and Z coordinates of ground points can be determined. The intensity of 
the returns can also be recorded. There are basically two types of LiDAR systems: discrete and 
waveform. A short pulse (~ns) is emitted from the laser and in discrete systems one or more 



 

discrete distances and intensities are recorded. Waveform systems record the full waveform of the 
return signal. 

Methods of change detection can mainly be divided into two categories:   
• The determination of the difference of  classifications of a surface obtained at two periods;  
• The direct determination of change between two data sets. 

 Detecting changes by supervised classification is unreliable when the appearances of non-
buildings and buildings are similar. Furthermore, using spectral information to detect change does 
not consider the situation when the differences occur in shape instead of colour (Huang and Chen, 
2007). A number of research results, such as Knudsen and Olsen (2003), Matikainen et al. (2004), 
Walter (2004a, b) and Nielsen and Canty (2011) belong to the first category above. The second 
category [Murakami et al., 1999; Jung, 2004] is unable to determine the land category because no 
classification is used. It is also observed that trees often cause mistakes in the output of research. 

Even though aerial photography has been conventionally employed for change detection 
[Niederöst, 2001; Knudsen and Olsen, 2003; Walter, 2004a; Walter, 2004b], aerial photographyis 
subject to several unavoidable problems such as: shadows in the scenes acquired over dense 
urban areas with many skyscrapers; the spectral information of certain features in aerial 
photography is diverse and ill-defined (Knudsen and Olsen, 2003); perspective projection causes 
relief displacement of buildings, which requires height information to correct. Therefore, the 
employment of LiDARdata rather than spectral information derived from aerial photographs offers 
important advantages (Tuong, et al., 2004). It allows obtaining 3D point clouds of the surface with 
high density as well as high accuracy. Moreover, the method is capable of collecting data over 
large areas in a short time (Baltsavias, 1999). 

Instead of the multi-spectral imagery that was often used in the past, many change detection 
methods using LiDAR data have been proposed.  Murakami et al., (1999) carried out change 
detection of buildings using LiDAR data in Japan. That study was a simple comparison between 
two datasets. Tuong et al., (2004) presented an automatic method for LiDAR-based change 
detection of buildings in dense urban areas. Walter (2004b) used LiDAR data in an object-based 
classification to determine the land-use category after the observation of land phenomena. 
Matikainen et al. (2004) divided a LiDAR point cloud into homogeneous areas, and then extracted 
information to discover the building areas for change detection. Girardeau-Montau et al. (2005) 
directly used point-to-point position relations for change detection. Huang and Chen 
(2007)included LiDAR data and aerial images to detect the changes of building models. Brzank et 
al., (2009) presented a new method to detect and evaluate morphologic changes of the Wadden 
Sea based on the extraction of structure lines of tidal channels from LiDAR data. Chien and Lin 
(2010) developed a new methodto find changes within 3D building models in the region of interest 
with the aid of LiDAR data. Their modelling scheme comprises three steps, namely, data pre-
processing, change detection in building areas, and validation. Research findings clearly indicate 
that the double-threshold strategy improves the overall accuracy from 93.1% to 95.9%. 

It is worth mentioning that, as change detection is an important step in data updating, some 
methods used spectral-based methods such as the iterative principal components analysis (IPCA) 
to determine temporal distance in feature space and combine it with a Bayesian decision rule to 
determine the presence of change (Spitzer et al., 2001). Clifton (2003) describes training neural 
networks to learn expected changes between images and to then identify pixel changes which do 
not match what is “expected”. Hashimoto et al. (2011) proposed a knowledge-based change 
detectionapproach, which can obtain change information thatincludes not only land cover changes, 
but also contextualchanges, such as types of damage caused by natural hazards.This approach 
mainly consists of two processes: informationextraction and change inference using a Bayesian 
network.Information extraction employs object-based image analysisfor extracting spatial 
information. Change inference usesextracted information and the Bayesian networkconstructed 
from knowledge of the change detection process. Todemonstrate this approach, change detection 
of mudslidedamage caused by heavy rain in Yamaguchi Pref., Japanwas conducted.Some other 
methods used multi-temporal high-resolution imagery to detect changes in spectral difference or 
used supervised classification to determine building positionsfor comparisons of two epochs for 
change detection (Knudsen and Olsen, 2003; Kumar, 2011). 

This paper describes a proposed workflow for LiDAR-based change detection. The paper is 
organised as follows. Section 2 describes the study areas and data sources. Section 3 describes 
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four-class thematic image, typically divided into the four categories of: ‘background’; ‘decreased’, 
‘increased’; and ‘unchanged’ as shown in figure 2.  

 

 

 
Figure 2: Manually digitized reference changes. 

 

3 METHODOLOGY 

3.1 Pre-processing 

First, both DEMs were registered to each other based on a projective transformation. The 
registration process resulted in small Root Mean Square Errors (RMSE) that did not exceed 0.15m 
in both X and Y directions. Following the transformation, the images were resampled to 1m pixel 
size.  A grid format is preferred tothe raw point cloud formatto speed up the processing, particularly 
when there is a direct comparison of the two datasets.In order to obtain a high image quality and to 
reduce the processing time, a bilinear interpolation was applied for the resampling process. The 
bilinear interpolation can result in a better quality image than nearest neighbourhood resampling 
and requires less processing than cubic convolution. 

 
 

3.2 Main-processing 

Four different change analyses were performed to evaluate the efficacy of LiDAR data for 
detecting changes occurring at two different temporal scales. The four methods include: image 
differencing; principal components analysis (PCA);minimum noise fraction (MNF); and Post-
Classification based on support vector machine (SVM). After these steps, a simple majority vote 
has been applied to generate the change detection image. All the methods proposed in this 
research were implemented through programs generated by the authors in a Matlab environment. 
An interface was developed to enable the user to: detect changes through the aforementioned four 
methods; combine votes derived from all methods; generate a change detection image; and 
evaluate the change detection results. The workflow for this investigation is shown in figure 3. 

 



 

 
Figure 3: The workflow for the proposed change detection method. 

 
In the first change detection technique, differences between the two DEM images that 

exceed a user-specified threshold of 10 pixels in area and 0.30m in height, double of the LiDAR 
system accuracy, were computed and highlighted. In the image differencing method, the second 
image is subtracted from the first image to provide the difference and highlight changes. The 
second image is more recent and the differencesreflect changes over time. After application of 
image differencing, increases in height values that are more than the predefined thresholds, are 
highlighted as increases, while decreases in height values that are more than the predefined 
thresholds, are highlighted as decreases. The result is a grey scale image composed of a single 
band of continuous data that reflects the changes. The change image is a four-class thematic 
image, typically divided into the four categories of: background; decreased, increased; and 
unchanged. Although the calculation is simple, the interpretation requires knowledge about the 
area, because every difference relates to a certain location but not necessarily to the same object. 

In the second change detection technique, principal components analysis (PCA) has been 
applied to detect changes. Principal components analysis (PCA) is commonly applied for 
orthogonal data transformations. PCA maximizes the spectral variability detected by decreasing 
the redundancy of information contained in multiple spectral bands (Armenakis et al., 2003). PCA 
components are based on statistical relationships that are difficult to interpret, and are variable 
between different landscapes and different dates for a single landscape (Collins and Woodcock 
1994). PCA is a linear transformation of the data along perpendicular axes of maximum variance 
between data sets (Legendre and Legendre 1998). The first eigenvector sorts pixels along an axis 
of highest correlation between data sets. Pixels on this axis have not significantly changed 
between the two images. The second eigenvector is perpendicular to the first, and therefore sorts 
pixels that represent differences between data sets. 

In the third change detection technique, the minimum noise fraction Transform (MNF) as 
modified from Green et al. (1988) has been performed to detect changes. MNF is a linear 
transformation that consists of the following separate principal components analysis rotations: (i) 
The first rotation uses the principal components of the noise covariance matrix to decorrelate and 
rescale the noise in the data (a process known as noise whitening), resulting in transformed data in 
which the noise has unit variance and no band-to-band correlations; (ii) The second rotation uses 
the principal components derived from the original image data after they have been noise-whitened 
by the first rotation and rescaled by the noise standard deviation. The inherent dimensionality of 
the data is determined by examining the final eigenvalues and the associated images. For the best 



 

results, and to save disk space, only those bands with high eigenvalues have been output. Images 
with eigenvalues close to 1 are mostly noise.  

In the fourth change detection technique, post-classification comparison wasperformed in 
order to detect changes. The two DEM images were classified using asupport vector machine 
classifier (SVM), then the classification results were compared and the differences were extracted. 
The objective is to classify the input data into four primary classes of interest, namely buildings, 
trees, roads, and ground. SVMs are based on the principles of statistical learning theory (Vapnik, 
1979) and delineate two classes by fitting an optimal separating hyperplane (OSH) to those 
training samples that describe the edges of the class distribution. As a consequence they 
generalize well and often outperform other algorithms in terms of classification accuracies. 
Furthermore, the misclassification errors are minimized by maximizing the margin between the 
data points and the decision boundary.Since the One-Against-One (1A1) technique usually results 
in a larger number of binary SVMs and then in subsequently intensive computations, the One-
Against-All (1AA) technique was used to solve for the binary classification problem that exists with 
the SVMs and to handle the multi-class problems. The Gaussian radial basis function (RBF) kernel 
has been used, since it has proved to be effective with reasonable processing times in remote 
sensing applications. 

Then, a simple majority vote, which can be more effective than more complex voting 
strategies (Waske, 2007), is used to generate the final result. If change detection algorithm 
ciassigns a given pixel to class label ωj, then we say that a vote is given to ωi. After counting the 
votes given to each class label by all detection algorithms, the class label that receives the highest 
number of votes is taken as the final output. It is worth mentioning that all votes are of equal weight 
and independent of height differences.When the four detection methods give completely different 
decision for a given pixel, which does not convey any information, the decision from the method 
with highest overall detection accuracy is considered.  

As a last step, the smaller detected regions were merged into larger neighbouring 
homogeneous ones or deleted according to an arbitrary 1m distance and 30m2 area thresholds 
respectively. The area threshold represents the expected minimum change area, while the 
distance threshold was set to 1m to fill in any gaps within the detected region.  Regions were 
retained if they were larger than the given area threshold and/or were adjacent to a larger 
homogeneous region by a distance less than 1m. Finally, region borders were cleaned by 
removing structures that were smaller than 5 pixels and that were connected to the region border. 
There was a compromise between cleaning thresholds less than 5 pixels, which may leave the 
original buildings uncleaned, and thresholds greater than 5 pixels which may remove parts of the 
detected region. The result was an image that represents the detected changes without noisy 
features and also without holes.  

 
3.3 Evaluation of the change detection results 

In order to evaluate the performance of the adopted method for change detection from 
LiDAR data, the results have been checked based on three different methods which include: (i) 
The overall detection accuracy; (ii) The produced omission and commission errors; and (iii) The 
completeness and correctness of the results. 

The overall accuracy for the detection process was assessed using the reference data and 
based on equation 1: 

 

)1(
NRP
NCPODA =  

 
Where ODA is the overall detection accuracy; NCPis the total number of correctly detected 

pixels and NRP is the total number of reference pixels.  
Since the overall detection accuracy is a global measure for the performance of the 

combination process, two additional measures were used to evaluate the performance of the 
proposed combination method, namely: commission and omission errors(Congalton, 1991). Unlike 
overall detection accuracy, commission and omission errors clearly show how the performance of 
the proposed methods improves the results or cause a deterioration of resultsfor each individual 
class compared to the reference data.  
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CEI and OEI are commission and omission errors of class increased; A1, A2 and A3are the 

numbers of incorrectly identified pixels of class increased associated with classes decreased, 
background and unchanged; R1 is the total number of pixels of the class increased as observed in 
the reference data; B1, B2 and B3 are the numbers of unrecognized pixels that should have 
identified as belonging to the class increased. The same is applicable for classes decreased. 

On the other hand, in order to evaluate the performance of the change detection process, the 
completeness and the correctness(Heipke et al., 1997) of the detected changes were investigated 
based on a per-pixel as follow:  

 

)5(

)4(

FPTP
TPsCorrectnes

FNTP
TPssCompletene

+
=

+
=

 

 
TP denotes to the number of true positives which is the number of entities that were 

automatically detected and were available in the reference data. FN relates to the number of false 
negatives which is the number of entities that were available in the reference data but not 
automatically detected. FP stands for the number of false positives which is the number of entities 
that were automatically detected but do not correspond to any entities in the reference data 
(Rottensteineret al., 2007). 

4 RESULTS AND ANALYSIS 

Figure 4 is a typical example showing the results in a sub-area of the whole test area. For the 
detected changes, the green colour indicates an increase, the red colour labels a decrease while 
black colour refers to both background and unchanged.  It can clearly be seen that the important 
changes occur in buildings. In the middle of the area the large building has been replaced with a 
new one with a different shape. At the lower right part of the area, some new buildings have been 
constructed. 

Another aspect of interest is where the misclassified pixels were recovered by the 
combination process. Most corrections occur at the edges of buildings and trees, which 
demonstrates the effect of between-class variance on the edge pixels which caused many of these 
pixels to be placed in an incorrect category. It can clearly be seen that the detected changes for 
PCA are eroded as compared to the reference data. This trend can also be observed for post-
classification results. On the other hand, the detected changes for image differencing are larger. 
However, the erosion effect has been reduced after applying the MNF and the simple majority vote 
combination.  
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Figure 4: Typical example of the change detection results. Areas in red are classified as 
decreased; areas in green are classified as increased; while areas in black refer to both 
background and unchanged. 

 
The overall detection accuracies of individual techniques, based on the reference data, are 

given in Table 2. MNF performed the best with 91.6% detection accuracy, followed by PCA, image 
differencing and post-classification with detection accuracies of 90.2%, 88.3% and 84.7% 
respectively.  

The improvement in detection accuracies achieved by the combination method compared 
with the best individual detection technique, MNF, was determined as shown in Table2. It is clear 
that the performances of simple majority voteare better than those of single detection methods. 
The improvement in detection accuracy of 5.6% is obtained from simple majority votealgorithm. 

 

Table 2: Performance evaluation of single detection techniques. 
 
 
 
 
 
 
 
 
 
 
Table 3 shows the commission and omission errors based on the proposed method, 

compared to the commission and omission errors of the best individual methods. It can be seen 
that a considerable amount of the misclassified pixels have been recovered by the combination 
process. For the best change detection method, MNF, the omission errors vary from 8.08% to 
10.65%, while the commission errors range from 6.17% to 9.28% respectively. For the combined 
change detection method based on the simple majority votealgorithm, the omission errors range 
from 2.87% to 7.03%, while the commission errors range from 3.32% to 6.11% respectively.The 
most important point to note is that both types of errors using simple majority vote are comparable. 
This indicates the capabilities of the proposed method to detect changes from LiDAR data. Figure 
5, which is a typical example of the error distribution map, showing that omission and commission 
errors mostly occurred at the building outlines. 

It is worth mentioning that some differences along the edges of buildings are not real 
changes. One possible reason for these differences is the random reflectance of laser pulses. 
Another possible reason could be the differences between parameters of the two surveying flights. 
The flight in 1999 was collected in summer while the flight in 2004 was collected in winter; many of 
detected ‘demolitions’ were trees. It can be concluded that trees are the main cause of commission 

Method Detection accuracy 
(%) 

image differencing 88.3 
PCA 90.2 
MNF 91.6 
post-classification 84.7 
simple majority vote 97.2 



 

errors.  There seems to be no mechanism to check the omission errors, which supports previously 
reported findings (Tuong et al., 2004). 

 
Table 3: Change detection errors of the proposed method compared with those of the individual 

methods. Com. and Om. Stand for commission and omission errors respectively. 

  post-
classification 

image 
differencing PCA MNF simple 

majority vote 
 Om. 

(%) 
Com. 
(%) 

Om. 
(%) 

Com. 
(%) 

Om. 
(%) 

Com. 
(%) 

Om. 
(%) 

Com. 
(%) 

Om. 
(%) 

Com. 
(%) 

Increased  19.02 11.93 11.68 9.38 10.30 09.31 8.08 09.28 02.87 03.32 
Decreased 21.50 11.98 16.89 11.46 13.09 07.32 10.65 06.17 07.03 06.11 

 
 

  
image differencing PCA MNF 

 

 
Post-classification simple majority vote 

 
Figure5: Evaluation of the results of change detection. Black: correct changesin pixels; grey: 

omission errors; yellow: commission errors. 
 

For the per-region based evaluation, a region was counted as a true positive if at least 90% 
of its area from the automatically detected results was overlapped by the corresponding area in the 
reference data. Figure 5 shows the completeness and correctness against the region size. The 
completeness and correctness of regions around 30m2 were around 79% and 75% respectively 
and these statistics improve as the region size increased. Completeness and correctness were 
over 91% for all regions larger than 50m2. The difference between completeness and correctness 
is a matter of 0.1–1% except for regions smaller than 50m2 where the difference is up to 4%. This 
further confirms the lower reliability of detecting regions smaller than 50m2. It can therefore be 
concluded that these tests strongly represent achievable accuracies for detection of changes by 
the proposed method using LiDAR data.    
 



 

 
 

Figure 5: Completeness and correctness derived for the detection process plotted against size of 
detected areas. 

 

5 CONCLUSION 

In this paper, we have applied a powerful method to combine change detection techniques 
with different performance based on the simple majority vote. To test the algorithm, four change 
detection methods were based on LiDAR data of different two epochs. The results showed an 
improvement in terms of detection accuracy as well as omission and commission errors. Detection 
accuracies of individual algorithms were 84.7%, 88.3%, 90.2% and 91.6% for post-classification, 
image differencing, PCA and MNF respectively, whereas the proposed fusion algorithm gave an 
accuracy of 97.2% which is an improvement of around 5.6%. On the other hand, the proposed 
method showed a high level of automation in change detection process. These results 
demonstrate the overall advantages of the proposed algorithm for change detection that could be 
applicable for detecting changes in buildings damaged in a disaster such as an earthquake.If two 
LiDAR flights could be carried out before and after an earthquake, the change detection results can 
reveal the collapsed buildings. Although this paper used only heights of buildings for change 
detection, it is well-prepared and opened to integrate elevation and intensity distribution in future 
studies. Spectral information from aerial imagery can also be applied along with LiDAR data in 
order to improve the performance of the proposed method, and to refine the results. 
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